\qquad

Match the letter with the correct answer. Please mark all answers to the left of the question number.
a. It is impossible to pinpoint both the speed and location of an electron at any given time
b. It is impossible for any two electrons to end in the same four quantum numbers
c. We can't pinpoint the EXACT location of an electron, but we can identify a GENERAL location by using quantum numbers
d. Identifies the size of the electron cloud
e. Identifies the orientation of the sublevel; sometimes called orbital
f. Identifies the direction of the spin of the electron
g. Identifies the shape of the electron cloud
\qquad 1. C Schrodinger
\qquad 2. D Principle Quantum Number
___ 3. F Spin Quantum Number
\qquad 4. A Heisenberg Uncertainty Principle
\qquad 5. E Magnetic Quantum Number (orbitals) 6. G Subsidiary Quantum Number (sublevel) 7. B Pauli Exclusion Principle

Fill in the blank with the correct answer.

1. Only 2 electrons can fit in an orbital.
2. The d sublevel is capable of holding $\quad 10$ _ electrons.
3. The p sublevel is shaped like a dumbbell - 2 lobes
4. There are \qquad 4 sublevels in the fourth energy level.
5. Electrons can spin either \qquad or \qquad
6. \qquad electrons are the electrons on the outermost energy level.
7. The p sublevel contains 3 orbital(s).

Complete the following questions for the element zinc.
8. Write the complete/full electron configuration. \qquad
9. Draw the Bohr Diagram.

10. Draw the orbital diagram.

11.Draw the noble gas notation
$[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10}$
12. Write the electron dot diagram.

Zn .

Identify the element from the following electron configurations
13. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$ \qquad Sulfur \qquad
14. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{1}$ \qquad Rubidium \qquad
15.

Flourine

Determine how each of the following electron configurations is incorrect and draw/write the correct configuration
16. Circle the three errors in the orbital filling diagram below. (Assume the number of electrons is correct). Draw the corrected diagram.

Correct diagram:
Errors: 2 p - last 2 electrons should be up/down
3 s - is not full and moved on to 3p
3 p - placed one down in the first orbital before placing one in the $3^{\text {rd }}$ orbital
17. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 4 d^{10} 4 p^{5}$ \qquad 4 d is not after $4 \mathrm{~s}, 3 \mathrm{~d}$ is \qquad
18. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{3} 3 d^{5} \quad$ _ 3 electrons can't go into 3 s , and 3 d is not after $3 \mathrm{~s}, 3 \mathrm{p}$ is after it \qquad
19. Identify the correct Dot notation C

20. Identify which element is represented by the picture: Argon

Mole Problems

21. How many moles are 12.04×10^{23} atoms of phosphorous?

$$
\frac{12.04 \times 10^{23} \text { atoms } \mathrm{P}}{1} \times \frac{1 \text { mole } \mathrm{P}}{6.02 \times 10^{23} \text { atoms } \mathrm{P}}=2.000 \text { mole } \mathrm{P}
$$

22. How many atoms are in 0.50 moles of zinc?
$\underline{0.50 \text { moles } \mathrm{Zn}} \quad \times \quad \underline{6.02 \times 10^{23} \text { atoms } \mathrm{Zn}}=3.0 \times 10^{23}$ atoms Zn $1 \quad 1$ mole Zn
23. How many atoms are in 3 moles of helium?

3 moles He $\quad \mathrm{x} \quad \underline{02 \times 10^{23} \text { atoms } \mathrm{He}=18.1 \times 10^{23} \text { atoms } \mathrm{He}, ~}$
$1 \quad 1$ mole He
24. Find the number of moles of nitrogen in 28 g of nitrogen.

$$
\frac{28 \mathrm{~g} \mathrm{~N}}{1} \times \underline{14 \mathrm{gole} \mathrm{~N}}=2.0 \mathrm{~mole} \mathrm{~N}
$$

25. Find the grams in 3 moles of hydrogen.
3.0 mole $\mathrm{H} \quad \mathrm{x} \quad \underline{\mathrm{gH}} \quad 3.0 \mathrm{~g} \mathrm{H}$
$1 \quad 1$ mole H
26 . Find the mass in 2.0 moles of lithium.
$\underline{2.0 \text { mole Li } \quad x \quad 7 \mathrm{gLi}=14 \mathrm{~g} \mathrm{Li}, ~}$
$1 \quad 1$ mole Li
26. Find the mass of 18.06×10^{23} atoms of helium.
$\underline{18.06 \times 10^{23} \text { atoms He }} \times \underline{1 \text { mole He }} \quad x \quad \underline{4 \mathrm{~g} \mathrm{He}}=12.00 \mathrm{~g} \mathrm{He}$
1
6.02×10^{23} atoms He 1 mole He
27. Find the mass of 1.5 moles of carbon dioxide.
1.5 moles $\mathrm{CO}_{2} \quad \mathrm{X} \quad \underline{44 \mathrm{~g} \mathrm{CO}_{2}}=66 \mathrm{~g} \mathrm{CO}_{2}$
$1 \quad 1{\text { mole } \mathrm{CO}_{2}}^{2}$
