Periodic Table Worksheet

Use the following clues to determine the elements being described and fill in the missing information.

1.	Each atom of this element has 9 protons and 10
	neutrons. The atomic number of the element is
	(1). The mass number is (2). The number of
	valence electrons is <u>(3)</u> . This element can be
	found in the <u>(4)</u> family on the periodic table.
	The valence configuration of this atom is <u>(5)</u> .
	This element is classified as a(n) (6). This
	element is <u>(7)</u> , with a symbol of <u>(8)</u> .

- 2. This element is a metalloid of Group IV. It has __(9)_ valence electrons on the third energy level. Its name is __(10)_, symbol __(11)_. Its atomic number is __(12)_ and its mass number is __(13)_. This element has __(14)_ neutrons.
- 3. This is a Halogen and is found in Group _(15) . It has _(16) valence electrons. It has 17 electrons in a neutral atom. The element is _(17) , symbol _(18) . It has _(19) protons and a mass number of 35. How many neutrons does it have? _(20)_
- This element is the largest of period three.
 It is <u>(21)</u>, symbol <u>(22)</u>. Its atomic number is <u>(23)</u> and it is found in the family <u>(24)</u>.
- 5. Each atom of this element has 56 protons and 81 neutrons. The atomic number is _(25)_ and the atomic mass number is _(26)_. The number of valence electrons this atom has is _(27)_ because it is found in Group _(28)_. The element is _(29)_, symbol _(30)_.

1.	 		
2.			
3.		 	
4.		 	
5.		 	
6.			
7.			
8.			
9.			
10.			
18.		 	
19.		 	
22.	 	 	
25.			
27.		 	
28.		 	
29.		 	
30			

- 6. This is a Group II element with 12 protons. The number of electrons in a neutral atom of this element is <u>(31)</u>. It has <u>(32)</u> valence electrons on the <u>(33)</u> energy level. The family name of this element is <u>(34)</u>. The mass number is <u>(35)</u> and there are <u>(36)</u> neutrons in an atom of this element.
- 7. This element has the maximum number of valence electrons in period 4. It is <u>(37)</u>, symbol <u>(38)</u>, atomic number <u>(39)</u>, mass number <u>(40)</u> and it has <u>(41)</u> neutrons. Its family name is <u>(42)</u>.
- 8. This element is a transition metal. It has __(43)_ valence electrons and is found in period 5. It has a nuclear charge of +47. The element is __(44)__, symbol __(45)_ and atomic number __(46)_. Its mass number is __(47)_ and it has __(48)_ neutrons in its nucleus.
- 9. This element has a mass number of 40 but it only has 2 valence electrons. It is not a transition metal. It is found in Group (49) and has electrons in (50) energy levels. The element is (51), symbol (52) and atomic number (53).
- 10. This element has the largest atoms of Period 4.

 The atomic number of this element is _(54) .

 The number of protons in one atom of this element is _(55) . An atom of this element has _(56) valence electrons and has _(57) completely filled quantum levels. The element is a member of the _(58) _family. The element is _(59) _, symbol _(60) _.

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60